TORQUE, STATICS AND ROTATIONAL DYNAMICS
 NJ-OER TOPIC-9-10

-State the first condition of equilibrium.

- State the second condition of equilibrium.
-Calculate net torque from force, distance and angle
-Study the turning effect of force.
-Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration.
-Calculate rotational kinetic energy.
-Demonstrate the law of conservation of energy.
-Calculate angular momentum.
-Demonstrate the law of conservation of angular momentum
$\tau=$ Torque magnitude
$\boldsymbol{\tau}=$ Torque as a vector.
It is negative for clockwise and positive for counterclockwise Torque is always defined in terms of a rotation with respect to a point.
$\boldsymbol{\tau}$ net $=$ Net torque.
This is the vector sum of all torque
$F=$ magnitude of Force
$r=$ "Distance of the force to the point of rotation"
$\theta=$ angle between the force and the line joining point of application to point of rotation

I = Moment of Inertia
M= Mass
R=Radius
$\alpha=$ Angular acceleration
$\omega=$ Angular velocity
$\mathrm{L}=$ Angular momentum
KEr= Rotational energy
KET= Translational energy
$\mathrm{mi}=$ mass of each object

SI UNITS

Torque is in "N.m"
Angular velocity and angular speed is in "rad/s"
Angular acceleration is in "rad/s2"
Moment of inertia is in "kg m"
Energy or work is in Joule " J "
Angular momentum is in " $\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$ "

$\tau=r F \sin \theta$	
$\tau=r \perp \mathrm{~F}$	$\mathrm{I}=\Sigma \mathrm{m} R^{2}$
$r \perp=r \sin \theta$ perpendiculardistance	$L=I \omega$
$\tau=r \mathrm{~F} \perp$	$\tau=\Delta L / \Delta t$
$\mathrm{F} \perp=\mathrm{F} \sin \theta$ perpendicularcomponent	$\begin{aligned} & \sum L i=\sum L f \sum L i=\sum L f \\ & \text { if } \tau(\text { external })=0 \end{aligned}$
For multiple forces tnet $=\Sigma(+/-) \tau$	$W=$ met θ
Forces that rotates counterclockwise are -	
Forces that rotates clockwise are +	$\mathrm{KET}=1 / 2 \mathrm{mv}{ }^{2}$
τ net=\| α acceleration	$K E T=1 / 2$ $\omega=v / R ~ f o r ~ r o l l i n g ~$
τ net $=0$ (equilibrium)	$\mathrm{E}=\mathrm{KET}+\mathrm{KEr}+\mathrm{PE}$
	$\mathrm{Ef}=\mathrm{Ei}$ if $\mathrm{WNC}=0$

Formulas
 and Constants

KEY STRATEGIES TO FIND NET TORQUE

Draw the free body diagram
TORQUE DEPENDS ON THE POINT OF ROTATION Identify the distances
Identify the angles
Identify the sign of Torque by asking which way would it rotate if it was the only force

Calculate individual torques and add

There are 3 identical equations. Based on the problem, one of them might be more convenient
$\tau=r F \sin \theta$
$\tau=r \perp \mathrm{~F}$
$r \perp=r \sin \theta$ perpendicular distance
$\tau=r \mathrm{~F} \perp$
$\mathrm{F} \perp=\mathrm{F} \sin \theta$ perpendicular component
These are magnitude equations
Signs are determined by the direction of rotation

FINDING TORQUE USING FREE BODY DIAGRAMS

Equilibrium: remains stationary

NET TORQUE CLASSWORK

A metal bar with 6 meters length is placed on the x-axis horizontally. Three forces are acting on it. $F 1=4 \mathrm{~N}$ is applied upward 2 meters from the left edge, $F 2=6 \mathrm{~N}$ is applied making 30 degrees with the x-axis from 4 meters distance from the left edge and $F 3=20 \mathrm{~N}$ is applied towards right from the right edge.
Find tnet if a) There is a pin on the left edge b) There is a pin at the center c) There is a pin at the right edge.

F3

	F1	r1	Torque1	F2	r2	Torque2	F3	r3	Torque3	tnet
Rotate from the left	4			6			20			
Rotate from the center	4			6			20			
Rotate from the right	4			6			29			

$|\tau|=r F \sin \theta$ however r changes for each case. r is the distance from the point of rotation to the point of application Sign for individual torques Torque1 Torque2 Torque3 may also changedepending on the point of rotation.

CLASSWORK ON TORQUE EQUILIBRIUM FIND THE MISSING FORCE

1) A uniform $1000-\mathrm{N}$ piece of metal that is 12 m long is suspended horizontally by two vertical wires. One wire is at the left end and the other one is 9 meters away from the left end. What are the tensions
2) A uniform meter stick with 4 N weight is held in equilibrium by two supports. First string is at 20 cm mark and the other is at 60 cm mark. What are the normal forces on the supports?
3) A 2 kg metal bar is attached to a wall, free to rotate about the pivot. Metal bar is 3 meters long. On the other end, the bar is attached to a cable that makes 24 degrees angle with the horizontal. Calculate the tension in the cable. Calculate x and y components of the reaction force that the pivot is exerting ($R x, R y$) using the first condition of equilibrium.

$$
\tau=r F \sin \theta \text { Fnet }=0 \quad \tau \text { net }=0
$$

ACTIVITY ON EQUILIBRIUM: Simple Machines

Go to https://phet.colorado.edu/sims/html/balancing-act/latest/balancing-act_en.html Go to balancing LAB. Click on ruler. Place a M1=5 gr load at 1.5 meters distance.
Balance M1 load with a M2 load. Remove the supports. At equilibrium, mark the distance of F2 from the point of rotation. Write the value on the table below. Change M2 repeat for 3 more times
Calculate each force using $F=m g . g$ is gravity. Write the simple machine equation $F 1 \times L 1=F 2 X L 2$
Verify that Torque left is equal to Torque right. This is a magnitude equation.
Find the reaction force R exerted by the support point using Newton's Law for equilibrium.

M1 (gr)	F1 (N)	L1 (m)	M2 (gr)	F2(N)	L2 (m)	$\tau($ left $) \mathrm{Nm}$	$\tau($ right)	Nm
5		1.5	5	(N)				
5		1.5	10					
5		1.5	15					
5		1.5	30					

ADVANCED ACTIVITY ON NET TORQUE

Open https://phet.colorado.edu/sims/html/balancing-act/latest/balancing-act en.html
Go to balancinglab, click on the ruler. Attach a M1=15 gr load 1 meter away from the point of rotation Balance M1 load with two masses M2 and M3, mark their location from the point of rotation.
Write the value on the table below. Repeat for 3 more times using the values on the table.
Calculate each force using F = mg and calculate Torque for each force. Determine the signs for each torque Add the Torques and verify that net torque is equal to zero at equilibrium.

m1 (gr)	F1(N)	r1(m)	m2(gr)	F2(N)	r2(m)	m3(gr)	F3(gr)	r3(m)	$\tau 1$ (Nm)	$\tau 2(\mathrm{Nm})$	$\tau 3$ (Nm)	τ net(Nm)
10		1	5			5						
10		1	5			10						
10		1	5			15						
10		1	5			20						

$\tau=$ Fr since the weight is perpendicular, $\sin \theta=1$ tnet $=\Sigma(+/-) \tau$ Forces that rotates counterclockwise are -
Forces that rotates clockwise are +

CLASSWORK ON MOMENT OF INERTIA

Moment of inertia is the mass equivalent for rotational systems

1) Calculate the moment of inertia of a 5 kg sphere with 0.4 meters radius 2) What should be the mass of a thin spherical shell of radius 0.2 meters so that its moment of inertia is $20 \mathrm{kgm}^{2}$.
2) A solid cylinder of mass 16 kg and radius 0.5 m is rotated about the central diameter. What is the length of the cylinder so that its moment of is $2.4 \mathrm{kgm}^{2}$.
3) An annular cylinder with 4 kg mass, 0.6 m outer radius and 0.4 meters inner radius is rotated about its center. What is its moment of inertia 5) A disc with $I 1=4 \mathrm{kgm}^{2}$ is placed on top of a slab with $I 2=7 \mathrm{kgm}^{2}$. What is the total moment of inertia.

ROTATIONAL EQUIVALANTS OF TRANSLATIONAL CONCEPTS AND EQUATIONS

	inertia	motion	acceleration	momentum	kinetic energy	action
Translational	m	v	a	$\mathrm{P}=\mathrm{mv}$	$\mathrm{KE}=1 / 2 m v^{2}$	Force
Rotational	I	ω	α	$\mathrm{L}=\mathrm{I} \omega$	$\mathrm{KEr}=1 / 2 I \omega^{2}$	Torque

	Equilibrium Statics	Dynamics	Conservation of Momentum	Conservation Of Energy
Translational	Fnet $=0$	F=ma	$\Sigma \mathrm{Pi}=\Sigma \mathrm{Pf}$	$\mathrm{KEi}+\mathrm{PEi}=\mathrm{KEf}+\mathrm{PEf}$
Rotational	$\boldsymbol{\tau}$ net $=0$	$\boldsymbol{\tau}=1 \alpha$	$\Sigma \mathrm{Li}=\Sigma \mathrm{Lf}$	$\mathrm{KEi}+\mathrm{KERi}+\mathrm{PEi}=K E f+K E R f+\mathrm{PEf}$

CLASSWORK RELATED TO DYNAMIC SYSTEMS

1)A girl and a boy push a merry go round initially at rest. The boy applies 20 N force from 1.0 m away from the center tangentially and the girl applies 40 N from 0.9 m away from the center tangentially both rotating clockwise. Merry go round is a solid disc of radius 1.0 m and with mass $\mathrm{m}=80 \mathrm{~kg}$. Calculate (Find I and torquenet)
2) Two opposing forces acting on disc with 0.5 m radius and $\mathrm{I}=4 \mathrm{kgm}^{2}$. Disc is free to rotate about its center. First force is 30 N counterclockwise acting with 30 degrees angle relative to the radial direction and the other one is 20 N clockwise acting with 45 degrees from the edge of the disc. Calculate its angular acceleration.
3) A 5.0 kg solid spherical ball with 0.2 m radius is rolling without slipping with $\mathrm{v}=4.1 \mathrm{~m} / \mathrm{s}$. It climbs up a ramp. Calculate the maximum height it can reach before coming to stop. $\mathrm{I}=2 / 5 \mathrm{MR}^{2} \omega=\mathrm{V} / \mathrm{R}$. Energy is conserved.
4) A solid disc of mass 2.0 kg and radius 0.20 m rolls down from 2.5 meters height on an inclined plane. Its velocity at the end of the ramp is $5.3 \mathrm{~m} / \mathrm{s}$. How much energy is lost to friction? ($I=1 / 2 M R^{2} g=9.80 \mathrm{~m} / \mathrm{s}^{2}$.)
5) A solid disc with moment of inertial $=20 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating with angular velocity $\omega=6 \mathrm{rad} / \mathrm{s}$. A smaller disc at rest with $\mathrm{I}=10 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is dropped on the larger disc. What is the final angular velocity of the system? (Li=Lf)
6) A skater has a moment of inertia of $5.0 \mathrm{~kg} \mathrm{~m}^{2}$ when her arms are open, and at this time she is spinning at $0.90 \mathrm{rad} / \mathrm{s}$. When she pulls in her arms in and her moment of inertia decreases to $4.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, how fast will she be spinning?

REFERENCES

- Slide 1: Adobe id= 51483838 even metal balance By pixeltrap
- Slide 7 Middle image: Adobe id= 205136247 Torque physics example diagram, mechanical vector illustration poster. Rotational force mathematical equation. By VectorMine
- Slide 7 Left and right images: Open Stax College Physics online textbook
- Slide 9: Gen-Ed-Phys-I Workbook by M.Tabanli and J. Meenu
- Slide 10-11 Screenshot from PhET Interactive Simulations University of Colorado Boulder
- Slide 12: Open Stax College Physics online textbook

